Titrationsberechnungen

Als Chemielehrer unterrichtet man sie immer wieder, als SuS atmet man erleichtert auf, wenn man sie denn hat: Die allgemeine Titrationsgleichung.

    \[ (1) \; x_{p} \cdot c_{m} \cdot V_{m} = x_{m} \cdot c_{p} \cdot V_{p} \]

Der Index m steht für Maßlösung, also die Lösung mit der man tritiert und deren Konzentration cbekannt ist. Hier bestimmt man mit z.B. einer Bürette das verbrauchte Volumen Vm bis zum Äquivalenzpunkt bei einer Säure-/Basetitration.

Der Index p steht für Probelösung, also die Lösung, deren Konzentration cp bestimmt werden soll und deren Volumen Vbekannt ist.

Spannend sind die stöchimetrischen Faktoren xm und xp, die in der allgemeinen Titrationsggleichung ja vertauscht sind. Warum das so ist, lässt sich nicht unbedingt anschaulich erklären, sondern eher mathematisch, was viele Chemiebücher aber gerne verschweigen oder da einfach drüberweggehen.

Herausbekommen kann die Faktoren nur durch Aufstellung der entsprechenden Reaktionsgleichung. Hier ist die zentrale Fragestellung:

In welchem Verhältnis np : nm reagieren die in der Maß- und Probeklösung enthaltenen Moleküle oder Formeleinheiten miteinander?

Am Beispiel der Titration von Schwefelsäure (Probelösung) mit Natronlauge (Maßlösung) lässt sich das recht einfach erklären. Schwefelsäure ist ein sogenannte zweiprotonige Säure. Pro Molekül können also zwei Hydroniumionen (H3O+) gebildet werden:

    \[ (2) \; H_{2}SO_{4} + 2H_{2}O \rightleftharpoons 2H_{3}O^{+} + SO_{4}^{2-} \]

Titriert man diese mit Natronlauge, benötigt man pro Schwefelsäuremolekül (n) rechnerisch zwei Formeleinheiten (2n) Natriumhydroxid:

    \[ (3) \; 2NaOH  \rightleftharpoons 2Na^{+} + 2OH^{-} \]

Die vollständige Neutralisationsgleichung lautet dann:

    \[ (4) \; 2H_{3}O^{+} + SO_{4}^{2-} + 2Na^{+} + 2OH^{-} \rightleftharpoons 4H_{2}O + 2Na^{+} + SO_{4}^{2-} \]

Es gilt also dann:

    \[ (5) \; n_{m} : n_{p} = 2 : 1 \]

Die Stoffmenge n ist aber gerade das, was man zum Einsetzen in die Titrationsgleichung nicht braucht. Sie lässt sich aber durch c und V ausdrücken, da sie über die Definitionsgleichung der Konzentration miteinander verknüpft sind:

    \[ (6) \; c = \frac{n}{V} \;\;bzw.\;\; (7) \; n = c \cdot V \]

Jetzt haben wir alle Teile des Puzzles zusammen. Zuerst schreiben wir Gleichung (5) etwas anders:

    \[ (5) \; n_{m} : n_{p} = 2 : 1 \;\Leftrightarrow\; (8)\; \frac{n_{m}}{n_{p}} = \frac{2}{1} \]

und multiplizieren beide Seiten von (8) mit np:

    \[ (8)\; \frac{n_{m}}{n_{p}} = \frac{2}{1} \;\Leftrightarrow\; (9)\; \frac{n_{m}}{1} = \frac{2\cdot n_{p}}{1} \]

Die 1 im Nenner kann man sich auch schenken:

    \[ (10)\; 1 \cdot n_{m} = 2 \cdot n_{p} \]

Man sieht aber, dass durch diese simple Umformung der Faktor, der mal in der Verhältnisgleichung (5) zur Maßlösung gehörte, nun vor der Probelösung steht. Der Faktor für die Maßlösung würde auch die Seiten wechseln, man sieht ihn hier eigentlich nur nicht, weil er den Wert 1 besitzt. Aus Anschaulichkeitsgründen habe ich ihn aber dazugeschrieben.

Damit ist ein Rätsel schonmal gelöst. Zur schlussendlichen Titrationsgleichung kommt dadurch, indem man n gemäß Gleichung (7) durch c und V ersetzt, also

    \[ (11) \; c_{m} = \frac{n_{m}}{V_{m}} \;\;bzw.\;\; (12) \; n_{m} = c_{m} \cdot V_{m} \]

und

    \[ (13) \; c_{p} = \frac{n_{p}}{V_{p}} \;\;bzw.\;\; (14) \; n_{p} = c_{p} \cdot V_{p} \]

und das setzen wir jetzt noch in (10) ein:

    \[ (15)\; 1 \cdot  c_{m} \cdot V_{m} = 2 \cdot c_{p} \cdot V_{p} \]

Damit ist das Ziel erreicht. Das ganze System funktioniert natürlich auch für Redoxtitrationen. Die größte Schwierigkeit ist eigentlich „nur“ die Bestimmung des Verhältnisses, also das Aufstellen der Reaktionsgleichungen.

Meine Schülerinnen und Schüler bekommen dann die Faustregel:

In der Titrationsgleichung wechseln die Zahlenwerte aus dem stöchiometrischen Verhältnis einfach die Seiten.

Immer wieder toll, was LaTeX so kann.

Allgemeines Gasgesetz und Diagramme

Das allgemeine Gasgesetz braucht man in der Schule oft in Zusammenhang mit dem Satz von Avogadro. Es stellt einen Zusammenhang zwischen Druck, Volumen, Teilchenanzahl und Temperatur eines Gases her, berücksichtigt jedoch weder mögliche Anziehungskräfte zwischen Gasteilchen, noch Abweichungen der Gasteilchen von der Kugelform. Trotzdem bildet es eine gute Näherung für viele „Alltagsgase“ und reicht für schulische Zwecke vollkommen aus.

    \[ (1) \;\;  p \cdot V = n \cdot R \cdot T \]

Bedeutung der einzelnen Größen:

p: Druck in [kPa]1

V: Volumen in [L]

n: Stoffmenge („Teilchenanzahl“) in [mol]

R: allgemeine Gaskonstante

    \[ 8,3144621\frac{J}{mol \cdot K} \]

T: Thermodynamische Temperatur [K]

1 In der Schule rechnet man gerne in hPa, weil das besser zu der vormals gebräuchlichen Einheit mbar passt.

Exkurs – die Einheiten:

Damit der Term bei Umformung auch immer hübsch in sich zusammenfällt, braucht es etwas Wissen um die Zusammensetzung der Einheiten. Dabei gilt:

    \[ 1 Pa = 1 \frac{N}{m^2} \;\;\;\; \;\; 1J = 1 N \cdot m \]

… dann passt es später wieder alles.

 Mit Hilfe dieses Gesetzes lassen sich Diagramme („Visualisierungen“) mit einer Tabellenkalkulation erstellen. Neulich habe ich in unserem Schulbuch diese Darstellung entdeckt (aus rechtlichen Gründen analog nachgestellt):

Mit der nach V umgestellten Gleichung (1) und p = 101,3kPa (1013 hPa) sowie n=1 kann man mit einer Tabellenkalkulation sowas sehr schnell selbst machen.

    \[ (2) \;\;  V = \frac{1mol \cdot R \cdot T}{101,3kPa} \]

Das Diagramm ist trotzdem eine didaktisch lieb gemeinte Katastrophe und eines Bankenverkaufsprospekts würdig.

Wer sieht es? Genau. Die y-Achse wurde beschnitten (oder die x-Achse verschoben). Das kann man machen, sollte es jedoch im Diagramm kennzeichnen. Macht man es „richtig“, schaut es so aus:

Die didaktischen Reduzierer aus dem Schulbuch mussten noch eine graphische Extrapolationsaufgabe stellen, um klarzumachen, dass die Gerade überhaupt an einer bestimmten bzw. für sie „gewollten“ Stelle die x-Achse schneidet (-273°C).

Das kann man mit dem „richtigen“ Diagramm auch noch machen, sieht aber auch vorher viel leichter, dass vor dem Schnittpunkt der Geraden mit der x-Achse das Volumen negativ wird – bis zur Einführung der thermodynamischen Temperatur ist es dann kein großer Schritt mehr. Ist das geschafft, kann man auch solche Diagramme von SuS beschreiben lassen:

Mögliche Fragen:

  1. Beschreibe den Verlauf der Kurve. Erkläre ihn mit dem Kugelteilchenmodell.
  2. Stelle Vermutungen darüber an, wie die Kurve sich bei noch höheren, bzw. noch niedrigeren Werten für p entwickeln wird.
  3. Die Kurve wird niemals die x- oder y-Achse erreichen. Begründe, warum diese Aussage korrekt ist.

Für denjenigen, den es interessiert, hier noch das Tabellenblatt, welches ich für die Berechnung der Diagramme genutzt habe (quick & dirty): ODS | XLS